Subresultants and generic monomial bases

نویسندگان

  • Carlos D'Andrea
  • Gabriela Jeronimo
چکیده

Given n polynomials in n variables of respective degrees d1, . . . , dn, and a set of monomials of cardinality d1 . . . dn, we give an explicit subresultant-based polynomial expression in the coefficients of the input polynomials whose non-vanishing is a necessary and sufficient condition for this set of monomials to be a basis of the ring of polynomials in n variables modulo the ideal generated by the system of polynomials. This approach allows us to clarify the algorithms for the Bézout construction of the resultant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

Monomial Irreducible sln-Modules

In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.

متن کامل

On the Complexity of Sparse Elimination

Sparse elimination exploits the structure of a set of multivariate polynomials by measuring complexity in terms of Newton polytopes. We examine polynomial systems that generate 0-dimensional ideals: a generic monomial basis for the coordinate ring of such a system is de ned from a mixed subdivision. We o er a simple proof of this known fact and relate the computation of a monomial basis to the ...

متن کامل

On the irreducibility of multivariate subresultants Sur l’irréductibilité des sous-résultants multivariés

Let P1, . . . , Pn be generic homogeneous polynomials in n variables of degrees d1, . . . , dn respectively. We prove that if ν is an integer satisfying Pn i=1 di − n + 1−min{di} < ν, then all multivariate subresultants associated to the family P1, . . . , Pn in degree ν are irreducible. We show that the lower bound is sharp. As a byproduct, we get a formula for computing the residual resultant...

متن کامل

On the Complexity of a Gröbner Basis Algorithm

While the computation of Gröbner bases is known to be an expspace-complete problem, the generic behaviour of algorithms for their computation is much better. We study generic properties of Gröbner bases and analyse precisely the best algorithm currently known, F5. 1. Gröbner Bases Gröbner bases are a fundamental tool in computational algebra. They provide a multivariate generalization of Euclid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2005